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PHYSICS OF STRESSED SOLIDS

The Tfact that this phase-change type of
deformation is a function of time, and the elastic
type is not, has important consequences. Failure
as a result of a rapidly applied large compressive
load is by brittle fracture across surfaces parallel
to or making small angles with the axis of load;
as the rate of application is decreased failure will
tend to occur as shear along surfaces which are
at larger angles to the axis of load; if the appli-
cation is slow enough and the thermodynamic
potential relations are favorable the specimen
will deform by “‘gliding along 45° planes,” or by
“flow.”

If the load is not too great the shear may
proceed in steps—'melting” at high energy
points, shear of the remaining cohesive bonds,
slipping, recementation by solidification, the
cycle repeating itsclf as conditions again become
favorable. The most favorable surface for this
process is the 45°-plane along which the resultant
shear stress is a maximum and equal to one-half
the compressive load.

These statements need some qualification
because the force and potential functions are not
symumnetric in space and therefore vary with
orientation of the system. The curve of Fig. 1 is
thus a function of a vector 7 and the lattice will
tHerefore, if conditions are favorable, rupture or
shear along surfaces across which the cohesive
bond, F,, is the least such as cleavage, parting,
and twinning planes.

“Melting” can occur in specimens under ten-
sion, v¢z. along shear planes, but the phenomenon
should not be so evident here because it will take
place only at the free surfaces (see Eqgs. (11b),
(12b), (14b)).

DERIVATION OF EXPRESSIONS FOR “CREEP” Ok
“Prastic. FLow”

The creep relations will be derived first for a
solid under compressive load and immersed in a
liquid in which it is somewhat soluble.

Assume an initially “ideal solid” in which the
thermodynamic potential is the same for all the
faces and equal to the potential of the solid in
solution (solute), i.e., assume that the solid is in
equilibrium with the saturated solution at tem-
perature 1" and hydrostatic pressure p. If now
the solid is loaded by a longitudinal compressive
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force + the thermodynamic potentials at the
stressed and free faces of the solid and of the
solute will no longer be equal and the system no
longer in equilibrium so long as the stress exists.

In order to derive our thermodynamic equa-
tions the system is first divided into hypothetical
isolated parts, namely the regions at the stressed
surface, at the free face, and of the solution bulk.
We also assume any coexistence of phases neces-
sary for our derivations. The physical interpreta-
tion follows readily from this procedure and
moreover we avoid any confusion that might be
introduced from a compromise!! between the
thermodynamic and the physical picture.

The following formulae were derived by ordi-
nary thermodynamic methods applied to stressed
systems? and have been somewhat simplified
for putposes of clarity.

We have
(f) In az/a'lr) SE= ﬂ'f/pRT (98.)
and
(0 In a2/d7)rr= M=/ pERT, (9b)

where Eq. (9a) refers to the stressed face (sub-
script SF) and-(9b) to the free face (subscript
FF). a: denotes the activity of the solute, = the
compressive stress, M the mole. weight, »p
the density of the solid, R the gas constant
(R=83.156 bar cm), and T the absolute tem-
perature. £ is Young’s modulus of elasticity in
compression, i.e., E=dX/de where X is the
stress (negative for prossure) and e the extension
per unit length in the direction of the stress. For
small stresses /£ may be approximated by a
constant, generally of the order of 10° bars.

On integrating (11a) we have, at the stressed
face,

m—mo=(pRT/M) In (¢2/as,), (10a)

where p is the mean value for the integration
limits.

1 P, W. Bridgman, Phys. Rev. 7, 215 (1916), derives an
expression which may be correlated with (142) and (14b).
E. D. Williamson, Phys. Rev. 10, 275 (1917). 11 C.
Boydel], Ec. Geol. 21,' 1 (1926). Bovdcll derives Poynting's
cxpression which applies to a solid under hvdrostatic
pressure 1 and liquid at p» where pr>po Poynting’s
expression has the same form as (14a) of this paper.

2R, W, Goranson, T herimodynamic Re ns 1n Mulii-
¢ ponent Systems (Ca.me"xc {nst. Washinuton. Publ. No.
438, 1930). For usage of activity see R. W. Go"anaon Is
Chem, Phys. 5, 107-112 (1937).




